Simulation of Ragdolls

Inigo Sena

November 2023

1 Introduction

The purpose of this project is to research, understand and implement the var-
ious algorithms, data structures and mathematical foundations behind physics
simulations in the constraints of real time (for instance video games or film pro-
duction); with the goal of implementing a fully functional ragdoll. To achieve
this objective, we will research topics such as: the collision pipeline, rigid body
representation, numerical methods, acceleration structures and etc.

1.1 Framework

This project will be done entirely by scratch in the C++ programming lan-
guage except for the use of certain libraries for window management (GLEW),
OpenGL extension (GLAD), loading geometry (TinyObj) and math (glm).

The basic framework is built using OpenGL and a basic Bling-Phong shader
with a single directional light. Each object shown in screen has its own rigid-
body and geometry (mesh and half-edge).

2 Physics System

The Physics System is the part of the program responsible for the dynamics and
kinematics of all the objects in the scene; and its the only part of the simulation
that can update an object’s position and rotation.

2.1 Equations of Motion

The approach we are going to take in order to represent the motion of our
objects is based in Newtonian dynamics [Eberly, 2010]; by using the Newton-
Euler equations of motion. The idea for this approach is to derive Newton’s
second law to get an ordinary differential equation to represent the position of
an object’s center of mass.

dv d?z
ZF—m-a—m~E—m~ﬁ (1)

From this equation we can get a differential equation for the position & = v.
Furthermore, we can also define an ODE for the linear momentum (P = mwv)
of the object:

P dv

E—ma:ma:F (2)

Analogous ODEs for the orientation of a rigibody can be derived. For example,
the change in rotation of a rigidbody R (not to be confused with the angular

velocity w) is defined as

LY 3)

Where * represents the skew matrix multiplication. We can also get a differential
equation for the angular momentum L

dL
- 4
prak (4)

All of these differential equations will be used to compute the position and
orientation of all the objects in the scene at each frame.

2.2 State Vector and Rigidbody Representation

The state vector of a rigidbody is a conceptual vector that stores both spatial
information (position and rotation) and velocity information (linear and angular
momentum) [Baraff, 1997]. Thus, let Y (¢) be the state vector of a rigidbody:

Y(t) = t; (5)
)

Then, we can get the derivative of Y dY/dt from equations (1),(2),(3) and (4)
as

v(t)
dY |w(t)* R(t)

7(t)

There are still other quantities that we have to compute not discussed above:
linear velocity, inertia tensor and angular velocity. These are called derived
quantities and in order to compute those, we use a formula derived from either
one of the equations above (v and w for example), or from its own definition (the
inertia tensor). The latter is defined in world space, and its computed using a
user defined model space inertia tensor (the body inertia).

P
V= —

m
I''=R-1,}-R"
w=I"1

Then, the last variables we need are: mass and the inertia of the body. These
two variables are defined in object creation and are immutable.

2.3 Numerical Methods

Since we have multiple differential equations which all revolve around force
and torque; if we knew how those will be applied at all times we could try to
solve them analytically instead of numerically and this problem would be much
simpler. However, we can’t predict how a force or torque will be applied each
frame. Then, we are going to use numerical solvers in order to get the new state
vector [Eberly, 2010]. For this project I implemented the explicit Euler method
and the sympletic Euler method.

2.3.1 Explitic Euler

Given an initial value problem and a first order ordinary differential equation

dy
y(to) = vo

We can approximate a solution for the equation by doing the following;:

Yn+1 :yn+h'f<tnayn),vn€N (7)

That is, we start from our initial value and each iteration we increment
the previous value by the derivative and a certain step h € R. In our case,
yn =Y (t), f(t,y) = dY/dt and h = At. Then, equation (7) is:

x(t) v(t)
Y(t+ At) = 1];38 LAt “’(t}’;g(“ (8)
L(t) (1)

2.3.2 Sympletic Euler

The above method works for simple cases like constant force and torque but
breaks in more complex cases such as a pendulum with angles slightly bigger
than around 10°. This happens because every time the derivative is 0, we are
increasing the approximation linearly (even if the function is not linear), giving
us incorrect values. Given the system of differential equations:

dx
a—
= 1)
dv
i
o =9t
f(to) =vo
g(to) = zo

We can approximate a solution by

Un+1 :Un+hg(tnaxn) Tn41 :xn+h'f(tn7vn+1) (9)

This is really similar to Explicit Euler but one of the variables is dependent
on the value computed this iteration instead of the previous. This means that in
cases where Explicit Euler would fail (dz/dt = 0) because of accumulated error,
Sympletic Euler "fixes” itself by having the approximate derivative in this ¢,
instead of previous ¢ values. For this implementation, we would apply (8) to
the derivatives as:

oy v(t) F(t)/m
—(t A = “(t}?f(t) + O"SR (10)
7(t) 0

Where a = I} - (1 — w x (I, - w)) (this equation can be derived from
Euler’s equation of motion). Then, now that we have our derivative computed
numerically, we apply (8) again but with the new derivative.

3 Narrow Phase Collisions

Now that we have built a system for objects to move; we have to take the first
step in order to apply contact forces to objects. To do so, we are going to build
a system to detect objects colliding and by how much they are colliding in order
to apply a certain force and fix that penetration.

3.1 Minkowski difference

The mathematical principle to determine if two convex shapes intersect is done
through the Minkowski difference between two objects A and B (expressed as
A — B); which is defined as the set of all vectors from any point of B to any
point of A [Van Den Bergen, 2003]. We can prove that if we can find the origin
in A — B, then A and B intersect, therefore, if we can find at least one common
point P € ANB, that same point in A— B would be the 0 vector. Let p € AN B,
thenpc ApeBandp—p=0€c A— B.

Thus, the main problem we want to solve in collision detection is finding the
origin in the Minkowski difference between two objects.

3.2 Half Edge and Hill Climbing

When we start detecting collisions between objects we will want to have what
are called support points, i.e. points in our object that are the furthest in
a certain direction ¥. If we took a simple, brute force approach we could get
these points in O(n) time complexity [Ericson, 2004]; but we can use certain
algorithms and data structures to accelerate this process

3.2.1 Half Edge data structure

The Half Edge data structure is a way of describing object geometry in terms of
edges instead of vertices and triangles like we are used to in computer graphics.
Half Edges are composed of edges and faces. And edge consists of:

e Origin vertex: Starting position of the edge
e Face: Which face this edge is part of

e Next edge: The next edge this edge is connected to (similar to how
linked list have a next node)

e Twin edge: An adjacent edge to this one. They connect the same vertices
but with opposite direction and are part of different faces

While a face consists of:
e Normal: The normal of the face pointing outwards
e Edge: One of the edges of this face.

If the Half Edge was properly built, we should be able to loop around a face with
a single edge. Moreover, we are able to get to any vertex from any starting point.

This data structure is created after loading new geometry since it is based
on the vertices of the models. At first, we are going to build it with the same
edges and faces as our mesh. Then, we are going to identify twin edges. Lastly

halfedge
edge
g
=
3

vertex

Figure 1: On the left: Example of the HalfEdge data structure. Source: Uni-
versity of California, Berkeley. On the right: screenshot of a triangular mesh
with a Half Edge defined (the green lines represent the edges).

we are going to identify which faces can be merged. Two faces can me merged if
one of their edge’s twin is an edge on an adjacent face and if they share the same
normal. Figure 1 shows an example of how two triangles could be represented
as a Half Edge.

3.2.2 Hill Climbing

Hill Climbing is an algorithm which takes the bruteforce approach of going
through all vertices and, with the support of the Half Edge data structure, it
greedily explores vertices in order to find the furthest point alongside a direction.

The algorithm consists of taking a starting vertex V4 and checking all out-
going directions (i.e, taking all outgoing edges from this direction and checking
which is furthest). Then, we are going to take the edge wich is furthest in a
direction v, and take the endpoint V;. Then, we are going to iterate until we
find a vertex V; which is furthest in a certain direction. There is, however, a
caveat to this algorithm: it only supports convex meshes. Nevertheless, for this
project we are going to assume all our geometry will be convex.

3.3 Separating Axis Theorem

In order to detect when two objects are colliding we are going to use the Sep-
arating Axis Theorem, which consists of trying to find certain axes that
separate two objects to determine if they are not colliding.

Let O; and Oz be two objects we are trying to know if they intersect. To
determine if two objects are colliding, we are going to iterate over the faces of
O;1: f € F. Then, we are going to find a support point in the direction of —7
(the normal vector of our face f with opposite direction). To avoid unnecessary
model transformations, we can apply the model matrix of O; and the inverse
model matrix of Os to get the direction we are looking for in O3’s model space.

Figure 2: Example of SAT in 2D. Source: Wikimedia commons

Once we find this point P, we create the plane defined by f in world space. We
then compute the Signed Distance Function of our point with the plane; and
if this distance is positive (i.e, the point is ”above” the plane), we know that 7
is a separating axis and the objects won’t collide. If the distance is negative,
repeat this process with all faces.

This method works because we are implicitly computing the faces of the
Minkowski difference between O; and Os and checking if the origin is there.
There is still an issue present. If we see Minkowski differences computed ex-
plicitly, we can see that some faces are not defined by the subtraction of our
faces, but also defined by the parallelogram created with four vertices (figure
3) , two from O; and the other two from Oz [Choi et al., 2005]. Thus, we also
need to take edges into consideration when computing the intersection between
two objects.

The naive method to check edge vs edge intersection consists of going through
both objects’ edges, computing the cross product e; X e; and using them as a
candidate for a separating axis. This means the complexity of our algorithm
would become O(n?). We can improve this complexity by using Gauss Maps
and duality transforms.

3.3.1 Gauss Maps and Duality Transforms

A Gauss map is an alternative representation of our shape represented in the
unit sphere S?, where the normal vectors of our faces become points in the
sphere, and edges become arcs in our sphere. Implementation wise this trans-
formation is done implicitly rather than explicitly computing the Gauss map
and storing it in memory.

In the context of our algorithm, we will loop over the edges of both objects
and check if the arc of the Gauss Maps intersects. To do this, we define a, b, ¢, d

e

Q

<b M=PoQ

Figure 3: The right shape shows the Minkowski difference between P and Q.
The face labeled as F. is generated by the cross product between edges. Source:
Collision detection of convex polyhedra based on duality transformation Depart-
ment of Computer Science, The University of Hong Kong

as the normals of the faces adjacent to both edges (a and b of e; and ¢ and d
of e3) [Choi et al., 2005]. Now, we compute the Scalar Triple Product of these
values and we get check the following condition:

[c-(bxa)]-[d-(bxa)<0
[a-(dxe)]-[b-(dxe)] <0
[a-(cxb)]-[d-(cxb)]>0

If all three are true, the edges are a possible candidate, we compute the
cross product between them and then use the resulting vector to do the same
computations we did with faces. If any of them is false, it means the arcs don’t
intersect and these two edges are not a possible candidate

3.4 Contact Information

Now that we know if two shapes are in contact we need to generate certain
information in order to separate both objects. To do that, we need certain
information which will be stored in a structure called a Contact Manifold.
The contact manifold will stores:

e Minimum Translation Vector: The minimum distance between the
two bodies

e Feature: If the contact was a face or edge contact; and if it was a face,
did we use Oq’s faces or Oy’s

e Contact Points: Which points from either object penetrate the other
object. These points also contain extra information such as penetration
and a scalar A\, which will be used later for constraints.

Clip Plane Clip Plane

" I~

Reference Plane

Figure 4: Example of which features are present in a Face vs Face scenario in
2D. Source: Games Developer Conference and Valve Corporation.

Both the feature and the minimum translation vector can be generated on
the fly while computing SAT. The problem comes with the contact points of the
objects. If the feature is an edge vs edge, we just take the two closest points in
either edge. For face vs face, we need to do more work

3.4.1 Face vs Face contact point generation

The first step in contact point generation is to keep track of the reference face,
that is, the face whose normal will be the closest to the other object. From this,
we need to search for the incident face, the most anti-parallel face of the other
object. To do so, we compute the distance between the reference face and the
other object’s face’s and get the closest one. [Gregorius, 2015]

Now that we have both the incident and the reference face, we need to get the
points. To do so, we take all the points forming the incident face and clip them
against the adjacent faces of the reference face using the Sutherland-Hodgman
algorithm. Then after getting all the points we get rid of the points above the
reference face and we found all contact points.

4 Collision Resolution

Now that we have generated the contact information, we need a way to apply
certain forces in order to correct the position of our penetrating objects and
resolve the collision between them. There are multiple approaches to solve the
problem, but we are going to apply the impulse based method.

4.1 Impulse

An impulse J is defined as a force applied during time step At = to — t1. That
is: "
J = / F(r)dr

to
The impulse can also be reinterpreted as the change of momentum AP from to
to t1. In reality what we are going to do is apply a force F' in the time step of
our simulation At. Thus, given the vector from the objects center of mass to
the collision point r = (Pem — Peoliision), @ normal vector 7 and the impulse J
we can update velocities and momenta (linear and angular) as:

G=wi+J IV Fxi

Po=P +J-i

h
[V]

|
=
|
<
!

X 7

Here, 7 and 7 are both known, the only problem is computing the impulse. We
could apply Eberly’s formula to get J [Tamis, 2015] if we had a single contact
point. The issue comes when we have multiple contact points. We can compute
J for the first point Pj;, but the problem is that we modified the state of the
object. We could compute the impulse at P, without updating the body or we
could update the body and then compute P,’s impulse. The solution is to do
the former per each point. If we consider multiple simultaneous contact points,
we can write our problem as [Eberly, 2010]:

Minimize: ||Af + b||?, Subject to:
£>0 (11)
Af+b >0

This is a Convex Quadratic Programming problem; which can be translated
into a Linear Complementary Problem (LCP) and solved with algorithms such
as Lemke’s algorithm. This, however, is not optimal for real time applications®.
Instead, we are going to treat contacts as constraints.

4.2 Constraints

A constraint is a concept in mechanics in which the degrees of freedom of at least
one object can be limited by a mathematical function C'(p) = 0 [Chappuis, 2013].
In physics programming, they are often compared to shaders in computer graph-
ics [Catto, 2014], as they are the fundamental building blocks of physics engines.
As with shaders, there are certain constraints that are most common (contact,

IThis is not true if Lemke’s algorithm is implemented in the GPU as it is suitable for
parallelization [Lauritzen, 2007]

10

friction, etc.); but they also allow for creativity in making unique interactions.

For most constraints, the initial definition will be given by a position con-
straint; that is, the function C(p) limits how an object might move/rotate.
Nevertheless, the end goal of our constraint is finding an impulse; therefore we
will work with C(p). We can derive that C(p) = .J -7+ b [Catto, 2009], where .J
is defined as the Jacobian of the function C(p) and b (called the bias or push
factor) is a constant used for multiple purposes (Baumgarte stabilization,motor
constraints, restitution...) [Catto, 2009]. Then, for the constraint to be satisfied
we want to make C' (p) as close to 0 as possible. Thus, we are going to define
our corrective impulse P, = J* - X\ as the impulse that will modify the objects
velocity to minimize our velocity and position constraint functions.

In order to compute A, we can derive a formula from Newton’s second law
in impulse form MAv = P, (where M is the mass matrix, i.e, a square matrix
where the diagonal is either the identity times the object’s mass or the object’s
inertia tensor), the definition of our constraint C(p) = 0 and the definition of
our impulse P. = JT - \ [Tamis, 2015].Then, we have the following equations:

Vpost = Vprev + M_IPC
P.=J%)\

T
J Vpost = 0

Therefore, from these equations we can get the following formula for A

)= varev +b
_JMflJT

4.3 Contact Constraint

Now that we have a general definition for a constraint, creating the contact
constraint is a matter of defining C(p), C(p) and J. A contact constraint is
different from the previous constraint in which the condition for it to me bet
is not C(p) = 0, but rather C(p) > 0. Let P, and P, be the contact points of
objects A and B; and r, and 7} the vector from their center of mass’ position
to the contact point. Then C(p) and C(p) can be defined as: [Chappuis, 2013]

Clp)=(Pa—D) -1t (13)
C) = (i —(x@)T @ (7 x)7 ?b (14)
a

From this we can see that the vector multiplying the velocities is the Jacobian of
the constraint. In contact constraints we are going to use the term b = A% (where

11

d is the penetration of the point) for stabilization (this is called Baumgarte
stabilization), and, if we wanted to add restitution we could also add eJv to b
(where € € [0,1]). With this we have modeled a constraint for a single contact
point, but if we want to have multiple contact points we reach the same problem
of having an LCP. However, we can now resolve constraints by using iterative
solvers.

4.4 Multiple contacts, iterative solvers

We have defined what a constraint is and how to model contacts as a constraint;
now we are only missing how to deal with multiple contact points at the same
time. In order to compute the impulse for the object to be in a correct po-
sition, we are going to use iterative solvers; i.e. we are going to iteratively
go over all contact points and compute A. The algorithm we are going to use
is called Projected Gauss-Seidel. This algorithm is a numerical method
used to iteratively approximate systems of linear equations, that is, problems
that look like: Ax = b. In this case, A = IM~1JT x = (A, Ag, ... \,) and
b= Aitv - J(Aitv + M Foytornal) (Where v is a vector filled with the biases of
the constraints and v is the velocity) [Tamis, 2015].

The algorithm begins by selecting a starting As, which can be any number
but we can also use the result of the previous frame (warm start) [Catto, 2009].
Then, we are going to iterate ¢ times through the contact points (where i is
a user defined constant). Next, we are going to compute A for this iteration
and accumulate it into the contact point Acummuiativet+ = Acurrent and clamp
Acummulative t0 be greater or equal to 0 (this is the projected part of Gauss-
Seidel). We then compute A\ with the previous accumulated A and the current
accumulated A (so if we overshoot the correction it can also move the object
towards the other object), and update the velocities and momenta of the object,
but not the position. After doing all iterations, we will have an approximated
velocity to correct the penetration and we can do a single Euler step to correct
the object’s position and rotation.

5 Ragdolls

With all of these tools at our disposal, we can now start seeing how to imple-
ment ragdolls. In order to do that, we are going to define ragdolls as multiple
rigidbodies connected with joint constraints.

5.1 Ball-and-Socket Joints

The ball joint constraint, also known as ball-and-socket joint, is a constraint in
which the three degrees of translational freedom are limited, i.e, the objects can
rotate freely between themselves but can’t move from an anchor point. Then,
let P be the anchor point in world space coordinates, we then store p,,; the

12

anchor point in model space of both objects; and at each frame, we compute
Pwi the anchor point transformed with the current model to world matrix of
each object. Then, let r; be the vector from an objects position to p,;. The
constraint is defined as: [Cline, 2002]

C(p) = puwt — Pu2 (15)
J= (Eg T"f 7E3 77”';) (16)

And with these equations we can get a formula for A; the main difference being
that the Jacobian is now a 3x12 matrix instead of a 1x12 matrix. Therefore A
will be a vector of three values, one per each axis.

5.2 Hinge Joints

A hinge joint is similar to a ball joint; it limits the three translational degrees
of freedom; and it also limits two degrees of rotational freedom; only letting
the objects rotate along a certain axis. This constraint has two parts: the
translation constraint and the rotational constraint. The translation part is the
same as the ball-and-socket joint. The rotational constraint works by giving an
axis of rotation a, then storing it in the model space of each object (a; and
az). Then, at each frame we compute by and co two perpendicular vectors to
ay. Thus, our constraint is defined as: [Chappuis, 2013]:

cw = (2% (17)

aj - Cg
_ (0 —(bgxa1) O (b2xa1)
1= (0 —(cgxa1) 0 (c2x a1)> (18)

5.3 Building the Ragdoll

Now that we have the necessary joints; we need to create certain body parts
and connect them by joints. The starting point will be the chest; which will
have five ball joints attached: two for each upper arm, two for each thigh and
one for the head. Then: each upper arm will have a hinge joint attached to
the forearm with the axis being the Y axis (elbow); and each thigh will have a
hinge connected to the lower leg with the X axis (knee) as a rotational axis.

6 GPUs in physics programming

All of the computations proposed so far are expected to be done in the CPU.
One question that comes to mind is if this process can be accelerated by lever-
aging the parallelization powers and the higher FLOP count of a GPGPU; or
removing instruction overhead by using SIMD commands. The latter is more
straightforward as we just need to be careful about alignment and, every time
we want to do computations (such as an Euler step, or modify an impulse in a
constraint) we could do it in a single step. For GPGPUs, the process is more
complicated.

13

6.1 Interfacing with the GPU

The main way of interfacing with the GPU to do physics programming is by
using a GPGPU API such as OpenCL or CUDA. With this, we can dispatch
kernels for each different systems of our program [Coumans, 2013]. The prob-
lem then becomes synchronization and memory transfers. In the case of game
physics this can become a huge overhead as, if we want to modify rigidbodies
by game logic, that logic can only be executed in the CPU. Nevertheless, if we
only want to render a simulation without any kind of user input or external
logic, this could be a valid approach. Some games also use this to render and
simulate geometry that does not affect gameplay (i.e, rubble in an explosion,
particles, etc.); which by could be made so they live exclusively in the GPU;
removing work from the CPU.

6.2 Shape Representation in the GPU

In this project we’ve used the Half Edge data structure to represent geometry for
physics. In the GPU, specially for more complex simulations, we can represent
it as a group of particles [Bell et al., 2005]. In this method, we define a uniform
three dimensional grid around the object. We then raytrace our object, and
if a ray has an odd number of intersections with our shape, it means we are
inside the rigidbody. Now, no matter if our shape is convex or concave, our
collision detection algorithm has changed to finding if two particles are colliding
(a simple sphere vs sphere test). Moreover, the generation of this shape can be
accelerated using a technique called depth peeling [Lauritzen, 2007].

6.3 LCP in the GPU

As mentioned before, we can compute a global solution of impulses by using
Lemke’s algorithm; which is more accurate than our Projected Gauss-Seidel
solver: but its also more expensive. Using the GPU, we can dispatch a kernel for
each row of our matrix M, and a compute grid for each collision pair. According
to NVIDIA and assuming 2007 hardware, there is a 328% increase in queries
per second using a LCP algorithm in CPU vs GPU [Lauritzen, 2007]

7 Conclusion

This project has proved to be more difficult in some aspects, and easier in
other. I thought that some algorithms such as SAT would be harder to im-
plement, but they were easier than I thought they would; and things such as
integrating proved to be harder since there wasn’t too much information about
Semi Implicit Euler. One of the biggest challenges so far has been floating
point precision; and how small changes up to 0.0001 can, after a certain amount
of frames, make a huge difference in the simulation and break it completely.
One other thing that has proved to be quite difficult is not how to implement
things, but where. For example, I could find a lot of information about how to

14

solve a contact constraint with n points (which is difficult by itself); but it didn’t
say where to implement it and how to coordinate it with the rest of the systems.

One of the things I've learned is why every time something is abused in
a game (specially older games), it is usually the physics system. They are
extremely feeble and can break easily if you know where to exploit them. This
is unsurprising considering the whole system is built in approximations and
assumptions.

References

[Baraff, 1997] Baraff, D. (1997). An introduction to physically based modeling:
rigid body simulation ii—nonpenetration constraints. SIGGRAPH course
notes, pages D31-D68.

[Bell et al., 2005] Bell, N., Yu, Y., and Mucha, P. J. (2005). Particle-based
simulation of granular materials. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 77-86.

[Catto, 2009] Catto, E. (2009). Modeling and solving constraints.
[Catto, 2014] Catto, E. (2014). Understanding constraints.

[Chappuis, 2013] Chappuis, D. (2013). Constraints derivation for rigid body
simulation in 3d.

[Choi et al., 2005] Choi, Y.-K., Li, X., Wang, W., and Cameron, S. (2005).
Collision detection of convex polyhedra based on duality transformation. The
University of Hong Kong.

[Cline, 2002] Cline, M. B. (2002). Rigid body simulation with contact and con-
straints. PhD thesis, University of British Columbia.

[Coumans, 2013] Coumans, E. (2013). Gpu rigid body simulation using opencl.
[Eberly, 2010] Eberly, D. H. (2010). Game physics. CRC Press.
[Ericson, 2004] Ericson, C. (2004). Real-time collision detection. Crc Press.

[Gregorius, 2015] Gregorius, D. (2015). Robust contact creation for physics
simulation.

[Lauritzen, 2007] Lauritzen, A. (2007). GPU Gems 3. Addison-Wesley.

[Tamis, 2015] Tamis, M. (2015). 3d constraint derivations for impulse solvers.
Retreived Form: hitp://www.mft-spirit.nl/files/M Tamis-Constraints. pdf.

[Van Den Bergen, 2003] Van Den Bergen, G. (2003). Collision detection in in-
teractive 3D environments. CRC Press.

15

